ANTIAGEING POTENTIALS OF PLANT METABOLITES: A REVIEW

Authors

  • Abhishek Srivastava Research Scholar

Keywords:

Aging, Redox Imbalance, Oxidative Stress, Neurodegenerative disorders.

Abstract

Abstract

Ageing, a medically unsolved mystery, is a multifactorial process that causes cells, tissues, and organisms to gradually lose their functional capacity. Although it is impossible to stop ageing, it is entirely feasible to slow down the rate of ageing. Ageing is a multi-faceted molecular process exacerbated by various molecular pathways and biochemical processes supported by both environmental and genetic factors. These effects are a result of the stressors that accumulate over time as we age, causing biomolecules to become more and more damaged and ultimately compromising cellular homeostasis. Redox imbalance and oxidative stress are intrinsically linked to ageing and ageing-related diseases like cardiovascular disease, cancer, diabetes, and neurodegenerative disorders, which have exponentially increased in prevalence. The significance of herbs and herbal products is becoming more widely understood. Due to their extraordinary potential in the treatment and prevention of oxidative stress-related disorders, plants and their botanical preparations have been used for centuries. Each entire plant matrix contains hundreds of biologically active components that promise to positively affect. The use of contemporary scientific methods has recently been used to document the role of herbal medicines, herbal products, and specific phytochemicals in the prevention of ageing. This review focuses on some natural substances that have potent anti-ageing properties and can be used to treat a number of age-related neurological disorders. A number of substances, including phenolics, carotenoids, terpenoids, and alkaloids, may play a significant role as antioxidants and free radical scavengers. These ingredients can be found in fruits, seeds, leaves, or roots.

 

References

A. Mohammadirad et al., “Aging Effects of Some Selected Iranian Folk Medicinal Herbs-Biochemical Evidences,” 2013.

Y. S. Ho, K. F. So, and R. C. C. Chang, “Anti-aging herbal medicine-How and why can they be used in aging-associated neurodegenerative diseases?,” Ageing Research Reviews, vol. 9, no. 3. pp. 354–362, Jul. 2010. doi: 10.1016/j.arr.2009.10.001.

B. Salehi et al., “Plant-derived bioactives and oxidative stress-related disorders: A key trend towards healthy aging and longevity promotion,” Applied Sciences (Switzerland), vol. 10, no. 3. MDPI AG, Feb. 01, 2020. doi: 10.3390/app10030947.

M. J. Shahroudi, S. Mehri, and H. Hosseinzadeh, “Anti-aging effect of nigella sativa fixed oil on d-galactose-induced aging in mice,” J Pharmacopuncture, vol. 20, no. 1, pp. 29–35, Mar. 2017, doi: 10.3831/KPI.2017.20.006.

R. C. G. Corrêa, R. M. Peralta, C. W. I. Haminiuk, G. M. Maciel, A. Bracht, and I. C. F. R. Ferreira, “New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges,” Critical Reviews in Food Science and Nutrition, vol. 58, no. 6. Taylor and Francis Inc., pp. 942–957, Apr. 13, 2018. doi: 10.1080/10408398.2016.1233860.

H. K. Kim, “Protective effect of garlic on cellular senescence in UVB-exposed HaCaT human keratinocytes,” Nutrients, vol. 8, no. 8, Aug. 2016, doi: 10.3390/nu8080464.

J. H. Xiao, D. M. Xiao, D. X. Chen, Y. Xiao, Z. Q. Liang, and J. J. Zhong, “Polysaccharides from the medicinal mushroom cordyceps taii show antioxidant and immunoenhancing activities in a D -galactose-induced aging mouse model,” Evidence-based Complementary and Alternative Medicine, vol. 2012, 2012, doi: 10.1155/2012/273435.

R. Thanan et al., “Oxidative stress and its significant roles in neurodegenerative diseases and cancer,” International Journal of Molecular Sciences, vol. 16, no. 1. MDPI AG, pp. 193–217, Dec. 24, 2014. doi: 10.3390/ijms16010193.

V. I. Lushchak, “Free radicals, reactive oxygen species, oxidative stress and its classification,” Chemico-Biological Interactions, vol. 224. Elsevier Ireland Ltd, pp. 164–175, Dec. 05, 2014. doi: 10.1016/j.cbi.2014.10.016.

K. Das and A. Roychoudhury, “Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants,” Frontiers in Environmental Science, vol. 2, no. DEC. Frontiers Media S.A., Dec. 02, 2014. doi: 10.3389/fenvs.2014.00053.

“10”.

B. Halliwell’ and C. E. Cross1, “Oxygen-derived Species: Their Relation to Human Disease and Environmental Stress.”

S. B. A. G, S. Choi, J. Krishnan, and R. K, “Cigarette smoke and related risk factors in neurological disorders: An update,” Biomedicine and Pharmacotherapy, vol. 85. Elsevier Masson SAS, pp. 79–86, Jan. 01, 2017. doi: 10.1016/j.biopha.2016.11.118.

T. Muthumalage, K. Pritsos, K. Hunter, and C. Pritsos, “Commonly used air filters fail to eliminate secondhand smoke induced oxidative stress and inflammatory responses,” Toxicol Mech Methods, vol. 27, no. 6, pp. 458–466, Jul. 2017, doi: 10.1080/15376516.2017.1320694.

M. A. Incalza, R. D’Oria, A. Natalicchio, S. Perrini, L. Laviola, and F. Giorgino, “Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases,” Vascular Pharmacology, vol. 100. Elsevier Inc., pp. 1–19, Apr. 30, 2018. doi: 10.1016/j.vph.2017.05.005.

S. Prasad, S. C. Gupta, and A. K. Tyagi, “Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals,” Cancer Letters, vol. 387. Elsevier Ireland Ltd, pp. 95–105, Feb. 28, 2017. doi: 10.1016/j.canlet.2016.03.042.

A. Campbell and P. Solaimani, “Oxidative and Inflammatory Pathways in Age-Related Chronic Disease Processes,” 2016, pp. 95–106. doi: 10.1007/978-3-319-33486-8_6.

T. Miyata, S. Takizawa, and C. van Ypersele De Strihou, “Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: novel therapeutic targets,” Am J Physiol Cell Physiol, vol. 300, pp. 226–231, 2011, doi: 10.1152/ajpcell.00430.2010.-A.

S. Chikara, L. D. Nagaprashantha, J. Singhal, D. Horne, S. Awasthi, and S. S. Singhal, “Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment,” Cancer Letters, vol. 413. Elsevier Ireland Ltd, pp. 122–134, Jan. 28, 2018. doi: 10.1016/j.canlet.2017.11.002.

M. Matzinger, K. Fischhuber, and E. H. Heiss, “Activation of Nrf2 signaling by natural products-can it alleviate diabetes?,” Biotechnology Advances, vol. 36, no. 6. Elsevier Inc., pp. 1738–1767, Nov. 01, 2018. doi: 10.1016/j.biotechadv.2017.12.015.

A. S. Driver, P. Rao, S. Kodavanti, and W. R. Mundy, “Age-related changes in reactive oxygen species production in rat brain homogenates,” 2000.

I. L. C. Chapple and J. B. Matthews, “The role of reactive oxygen and antioxidant species in periodontal tissue destruction,” 2000.

K. Y. Lee, J. R. Kim, and H. C. Choi, “Genistein-induced LKB1-AMPK activation inhibits senescence of VSMC through autophagy induction,” Vascul Pharmacol, vol. 81, pp. 75–82, Jun. 2016, doi: 10.1016/j.vph.2016.02.007.

T. Beta, S. Nam, J. E. Dexter, and H. D. Sapirstein, “Phenolic content and antioxidant activity of pearled wheat and roller-milled fractions,” Cereal Chem, vol. 82, no. 4, pp. 390–393, Jul. 2005, doi: 10.1094/CC-82-0390.

M. Hedge, S. Lortz, J. Drinkgern, and S. Lenzen, “Relation Between Antioxidant Enzyme Gene Expression and Antioxidative Defense Status of Insulin-Producing Cells.”

S. Chirumbolo and G. Bjørklund, “PERM hypothesis: The fundamental machinery able to elucidate the role of xenobiotics and hormesis in cell survival and homeostasis,” International Journal of Molecular Sciences, vol. 18, no. 1. MDPI AG, Jan. 15, 2017. doi: 10.3390/ijms18010165.

N. Martins, L. Barros, and I. C. F. R. Ferreira, “In vivo antioxidant activity of phenolic compounds: Facts and gaps,” Trends in Food Science and Technology, vol. 48. Elsevier Ltd, pp. 1–12, Feb. 01, 2016. doi: 10.1016/j.tifs.2015.11.008.

I. Matias, L. P. Diniz, A. Buosi, G. Neves, J. Stipursky, and F. C. A. Gomes, “Flavonoid hesperidin induces synapse formation and improves memory performance through the astrocytic TGF-β1,” Front Aging Neurosci, vol. 9, no. JUN, Jun. 2017, doi: 10.3389/fnagi.2017.00184.

R. C. C. Chang and K. F. So, “Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. What do we know so far?,” Cellular and Molecular Neurobiology, vol. 28, no. 5. pp. 643–652, Aug. 2008. doi: 10.1007/s10571-007-9181-x.

N. Al-Rasheed, N. Al-Rasheed, Y. Bassiouni, L. Faddah, and A. M. Mohamad, “Potential protective effects of Nigella sativaand allium sativum against fructose-induced metabolic syndrome in rats,” J Oleo Sci, vol. 63, no. 8, pp. 839–848, 2014, doi: 10.5650/jos.ess14027.

Y. P. Lei, C. T. Liu, L. Y. Sheen, H. W. Chen, and C. K. Lii, “Diallyl disulfide and diallyl trisulfide protect endothelial nitric oxide synthase against damage by oxidized lowdensity lipoprotein,” Mol Nutr Food Res, vol. 54, no. SUPPL. 1, May 2010, doi: 10.1002/mnfr.200900278.

I. A. Sobenin, I. v. Andrianova, K. Y. Lakunin, V. P. Karagodin, Y. v. Bobryshev, and A. N. Orekhov, “Anti-atherosclerotic effects of garlic preparation in freeze injury model of atherosclerosis in cholesterol-fed rabbits,” Phytomedicine, vol. 23, no. 11, pp. 1235–1239, Oct. 2016, doi: 10.1016/j.phymed.2015.10.014.

Z. Y. Chen, R. Jiao, and Y. M. Ka, “Cholesterol-lowering nutraceuticals and functional foods,” Journal of Agricultural and Food Chemistry, vol. 56, no. 19. pp. 8761–8773, Oct. 08, 2008. doi: 10.1021/jf801566r.

K. Ried, “Garlic lowers blood pressure in hypertensive individuals, regulates serum cholesterol, and stimulates immunity: An updated meta-analysis and review,” Journal of Nutrition, vol. 146, no. 2, pp. 389S-396S, 2016, doi: 10.3945/jn.114.202192.

K. Bhardwaj, M. Verma, N. Verma, S. Bhardwaj, and S. Mishra, “Effect of long term supplementation of active garlic allicin in reducing blood pressure in hypertensive subjects,” International Journal of Advances in Medicine, pp. 231–234, 2015, doi: 10.18203/2349-3933.ijam20150550.

Z. Y. Chen, R. Jiao, and Y. M. Ka, “Cholesterol-lowering nutraceuticals and functional foods,” Journal of Agricultural and Food Chemistry, vol. 56, no. 19. pp. 8761–8773, Oct. 08, 2008. doi: 10.1021/jf801566r.

M. Atkin, D. Laight, and M. H. Cummings, “The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial,” J Diabetes Complications, vol. 30, no. 4, pp. 723–727, May 2016, doi: 10.1016/j.jdiacomp.2016.01.003.

P. B. Persson and A. B. Persson, “Age your garlic for longevity!,” Acta Physiologica, vol. 205, no. 1. pp. 1–2, May 2012. doi: 10.1111/j.1748-1716.2012.02424.x.

H. Nishimatsu et al., “Improvement of symptoms of aging in males by a preparation LEOPIN ROYAL containing aged garlic extract and other five of natural medicines-comparison with traditional herbal medicines (Kampo),” Aging Male, vol. 17, no. 2, pp. 112–116, 2014, doi: 10.3109/13685538.2013.771328.

J. Koscielny et al., “The antiatherosclerotic effect of Allium sati6um,” 1999.

A. F. G. Cicero, F. Fogacci, and A. Colletti, “Food and plant bioactives for reducing cardiometabolic disease risk: An evidence based approach,” Food and Function, vol. 8, no. 6. Royal Society of Chemistry, pp. 2076–2088, Jun. 01, 2017. doi: 10.1039/c7fo00178a.

J. H. Kim et al., “Preparation of S-Allylcysteine-enriched black garlic juice and its antidiabetic effects in streptozotocin-induced insulin-deficient mice,” J Agric Food Chem, vol. 65, no. 2, pp. 358–363, Jan. 2017, doi: 10.1021/acs.jafc.6b04948.

“5C”.

D. P. West and Y. F. Zhu, “Evaluation of aloe vera gel gloves in the treatment of dry skin associated with occupational exposure,” Am J Infect Control, vol. 31, no. 1, pp. 40–42, 2003, doi: 10.1067/mic.2003.12.

A. Surjushe, R. Vasani, and D. G. Saple, “ALOE VERA: A SHORT REVIEW,” 2008. [Online]. Available: http://www.e-ijd.org

L. Li et al., “Nanoparticle-encapsulated emodin decreases diabetic neuropathic pain probably via a mechanism involving P2X3 receptor in the dorsal root ganglia,” Purinergic Signal, vol. 13, no. 4, pp. 559–568, Dec. 2017, doi: 10.1007/s11302-017-9583-2.

“Effect of Dietary Aloe vera on Oxidative Stress in Aging 293.”

A. H. Rahmani, Y. H. Aldebasi, S. Srikar, A. A. Khan, and S. M. Aly, “Aloe vera : Potential candidate in health management via modulation of biological activities,” Pharmacognosy Reviews, vol. 9, no. 18. Medknow Publications, pp. 120–126, Jul. 01, 2015. doi: 10.4103/0973-7847.162118.

R. Archana and A. Namasivayam, “Antistressor effect of Withania somnifera,” 1999.

S. Jain, S. D. Shukla, K. Sharma, and M. Bhatnagar, “Neuroprotective effects of Withania somnifera Dunn. in hippocampal sub-regions of female albino rat,” Phytotherapy Research, vol. 15, no. 6, pp. 544–548, 2001, doi: 10.1002/ptr.802.

A. Bhattacharya, S. Ghosal, and S. K. Bhattacharya, “Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum,” 2001. [Online]. Available: www.elsevier.com/locate/jethpharm

S. K. Bhattacharya, A. Kumar, and S. Ghosal, “Effects of Glycowithanolides from Withania somnifera on an Animal Model of Alzheimer’s Disease and Perturbed Central Cholinergic Markers of Cognition in Rats?”

S. Â. Phane Bastianetto, C. Ramassamy, S. Dore, Y. Christen, J. Poirier, and R. Â. Quirion, “The ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by b-amyloid.”

S. T. Dekosky et al., “Ginkgo biloba for Prevention of Dementia A Randomized Controlled Trial.” [Online]. Available: http://jama.jamanetwork.com/

Z. Krigtofikovfi, J. Klaschka, H. Tejkalovfi, and O. Benegov~i, “High-affinity choline uptake and muscarinic receptors in rat brain during aging,” 1992.

T. Löffler, S. K. Lee, M. Nöldner, S. S. Chatterjee, S. Hoyer, and R. Schliebs, “Effect of Ginkgo biloba extract (EGb761) on glucose metabolism-related markers in streptozotocin-damaged rat brain,” 2001.

S. Â. Phane Bastianetto, C. Ramassamy, S. Dore, Y. Christen, J. Poirier, and R. Â. Quirion, “The ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by b-amyloid.”

Z.-X. Yao, K. Drieu, and V. Papadopoulos, “The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from b-amyloid-induced cell death by inhibiting the formation of b-amyloid-derived diffusible neurotoxic ligands,” 2001. [Online]. Available: www.elsevier.com/locate/bres

V. D. Petkov, R. Kehayov Stiljana Beicheva ElenaKonstantinova, V. v Pet kov, D. Getova, and V. Markovska, “Memory Effects of Standardized Extracts of Panax ginseng (G115), Ginkgo biloba (GK 501) and their Combination Gincosan® (PHL-00701).”

C.-X. Liu and P.-G. Xiaob, “Recent advances on ginseng research in China,” 1992.

L. Shen and J. Zhang, “Ginsenoside Rg1 increases ischemia-induced cell proliferation and survival in the dentate gyrus of adult gerbils,” Neurosci Lett, vol. 344, no. 1, pp. 1–4, Jun. 2003, doi: 10.1016/S0304-3940(03)00318-5.

“37c”.

D. Wheatley, “Kava and valerian in the treatment of stress-induced insomnia,” Phytotherapy Research, vol. 15, no. 6, pp. 549–551, 2001, doi: 10.1002/ptr.840.

“Horse chestnut-Aesculus hippocastanum: potential applications in cosmetic skin-care products,” 1999.

C. Fourneau, A. Laurens, R. Hocquemiller, and A. Cavc, “Radical Scavenging Evaluation of Green Tea Extracts,” 1996.

Q. Guo, B. Zhao, M. Li, S. Shen, and W. Xin, “Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes,” 1996.

S. Ntosh, K. Katiyar, N. Ahmad, and H. Mukhtar, “Green Tea and Skin.” [Online]. Available: http://archderm.jamanetwork.com/

C. A. Elmets, D. Singh, K. Tubesing, M. Matsui, S. Katiyar, and H. Mukhtar, “Cutaneous photoprotection from ultraviolet injury by green tea polyphenols,” J Am Acad Dermatol, vol. 44, no. 3, pp. 425–432, 2001, doi: 10.1067/mjd.2001.112919.

S. K. Bhattacharya, A. Bhattacharya, A. Kumar, and S. Ghosal, “Antioxidant Activity of Bacopa monniera in Rat Frontal Cortex, Striatum and Hippocampus.”

C. Stough et al., “The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects,” Psychopharmacology (Berl), vol. 156, no. 4, pp. 481–484, 2001, doi: 10.1007/s002130100815.

World Health Organization., WHO monographs on selected medicinal plants. World Health Organization, 1999.

A. H. Rahmani, Y. H. Aldebasi, S. Srikar, A. A. Khan, and S. M. Aly, “Aloe vera : Potential candidate in health management via modulation of biological activities,” Pharmacognosy Reviews, vol. 9, no. 18. Medknow Publications, pp. 120–126, Jul. 01, 2015. doi: 10.4103/0973-7847.162118.

“IJCEM1001002.” [Online]. Available: www.ijcem.com

C. Borek, “Significance of Garlic and Its Constituents in Cancer and Cardiovascular Disease.” [Online]. Available: https://academic.oup.com/jn/article-abstract/136/3/810S/4664377

N. Nillert, W. Pannangrong, J. U. Welbat, W. Chaijaroonkhanarak, K. Sripanidkulchai, and B. Sripanidkulchai, “Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-amyloid in rats,” Nutrients, vol. 9, no. 1, Jan. 2017, doi: 10.3390/nu9010024.

M. ben Salem et al., “Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC,” Evidence-based Complementary and Alternative Medicine, vol. 2017, 2017, doi: 10.1155/2017/4951937.

D. Zapolska-Downar, A. Zapolski-Downar, M. Naruszewicz, A. Siennicka, B. Krasnode ˛bska A , Blanka, and K. Codziej, “Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes,” 2002. [Online]. Available: www.elsevier.com/locate/lifescieLifeSciences71

L. Wen, X. Guo, R. H. Liu, L. You, A. M. Abbasi, and X. Fu, “Phenolic contents and cellular antioxidant activity of Chinese hawthorn ‘crataegus pinnatifida,’” Food Chem, vol. 186, pp. 54–62, Nov. 2015, doi: 10.1016/j.foodchem.2015.03.017.

J. C. M. Barreira, S. Rodrigues, A. M. Carvalho, and I. C. F. R. Ferreira, “Development of hydrosoluble gels with Crataegus monogyna extracts for topical application: evaluation of antioxidant activity of the final formulations.”

“Medicinal Herbs H A N D B O O K O F SECOND EDITION.”

C. Y. O. Chen, J. D. Ribaya-Mercado, D. L. McKay, E. Croom, and J. B. Blumberg, “Differential antioxidant and quinone reductase inducing activity of American, Asian, and Siberian ginseng,” Food Chem, vol. 119, no. 2, pp. 445–451, Mar. 2010, doi: 10.1016/j.foodchem.2009.06.049.

M. Kapadia and B. Sakic, “Autoimmune and inflammatory mechanisms of CNS damage,” Progress in Neurobiology, vol. 95, no. 3. pp. 301–333, Nov. 2011. doi: 10.1016/j.pneurobio.2011.08.008.

D. H. Kim, “Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng,” J Ginseng Res, vol. 36, no. 1, pp. 1–15, 2012, doi: 10.5142/jgr.2012.36.1.1.

A. Ilhan et al., “Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain,” Clinica Chimica Acta, vol. 340, no. 1–2, pp. 153–162, 2004, doi: 10.1016/j.cccn.2003.10.012.

X. Zhou, Y. Qi, and T. Chen, “Long-term pre-treatment of antioxidant Ginkgo biloba extract EGb-761 attenuates cerebral-ischemia-induced neuronal damage in aged mice,” Biomedicine and Pharmacotherapy, vol. 85, pp. 256–263, Jan. 2017, doi: 10.1016/j.biopha.2016.11.013.

N. Haramaki, S. Aggarwal, T. Kawabata, M. T. Droy-lefaix, and tESTER Packer, “Original Contribution EFFECTS OF NATURAL ANTIOXIDANT GINKGO BILOBA EXTRACT (EGB 761) ON MYOCARDIAL ISCHEMIA-REPERFUSION INJURY,” 1994.

P. Dolkar, D. Dolkar, S. Angmo, B. Kumar, and T. Stobdan, “Variability in phenolics, flavonoids and antioxidants in Seabuckthorn (Hippophae rhamnoides L.) seed from nine trans-Himalayan natural population,” J Berry Res, vol. 7, no. 2, pp. 109–116, 2017, doi: 10.3233/JBR-170149.

N. K. Upadhyay, M. S. Yogendra Kumar, and A. Gupta, “Antioxidant, cytoprotective and antibacterial effects of Sea buckthorn (Hippophae rhamnoides L.) leaves,” Food and Chemical Toxicology, vol. 48, no. 12, pp. 3443–3448, Dec. 2010, doi: 10.1016/j.fct.2010.09.019.

M. Ozarowski et al., “Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain,” Fitoterapia, vol. 91, pp. 261–271, 2013, doi: 10.1016/j.fitote.2013.09.012.

N. Okamura and andAkira Yagi, “Inhibition of Lipid Peroxidation and Superoxide Generation by Diterpenoids from Rosmarinus officinalis.”

A. el Omri, J. Han, P. Yamada, K. Kawada, M. ben Abdrabbah, and H. Isoda, “Rosmarinus officinalis polyphenols activate cholinergic activities in PC12 cells through phosphorylation of ERK1/2,” J Ethnopharmacol, vol. 131, no. 2, pp. 451–458, Sep. 2010, doi: 10.1016/j.jep.2010.07.006.

M. K. Jang et al., “Schisandra chinensis extract ameliorates nonalcoholic fatty liver via inhibition of endoplasmic reticulum stress,” J Ethnopharmacol, vol. 185, pp. 96–104, Jun. 2016, doi: 10.1016/j.jep.2016.03.021.

A. Szopa, R. Ekiert, and H. Ekiert, “Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies,” Phytochemistry Reviews, vol. 16, no. 2. Springer Netherlands, pp. 195–218, Apr. 01, 2017. doi: 10.1007/s11101-016-9470-4.

M. G. Battelli, A. Bolognesi, and L. Polito, “Pathophysiology of circulating xanthine oxidoreductase: New emerging roles for a multi-tasking enzyme,” Biochimica et Biophysica Acta - Molecular Basis of Disease, vol. 1842, no. 9. Elsevier B.V., pp. 1502–1517, 2014. doi: 10.1016/j.bbadis.2014.05.022.

M. G. Battelli, L. Polito, M. Bortolotti, and A. Bolognesi, “Xanthine oxidoreductase-derived reactive species: Physiological and pathological effects,” Oxidative Medicine and Cellular Longevity, vol. 2016. Hindawi Publishing Corporation, 2016. doi: 10.1155/2016/3527579.

J. M. C. Gutteridge and B. Halliwell, “Free radicals and antioxidants in the year 2000. A historical look to the future,” in Annals of the New York Academy of Sciences, 2000, vol. 899, pp. 136–147. doi: 10.1111/j.1749-6632.2000.tb06182.x.

G. P. Mcgregor and H. K. Biesalski, “Rationale and impact of vitamin C in clinical nutrition.”

B. Halliwell, “Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies?,” Archives of Biochemistry and Biophysics, vol. 476, no. 2. pp. 107–112, Aug. 15, 2008. doi: 10.1016/j.abb.2008.01.028.

S. C. W. Sze, J. Song, R. C. C. Chang, K. Y. Zhang, R. N. S. Wong, and Y. Tong, “Research advances on the anti-aging profile of Fructus lycii: An ancient Chinese herbal medicine,” Journal of Complementary and Integrative Medicine, vol. 5, no. 1. Berkeley Electronic Press, 2008. doi: 10.2202/1553-3840.1111.

K. J. Gohil, J. A. Patel, and A. K. Gajjar, “Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all.” [Online]. Available: www.ijpsonline.com

I. E. Orhan, “Centella asiatica (L.) Urban: From traditional medicine to modern medicine with neuroprotective potential,” Evidence-based Complementary and Alternative Medicine, vol. 2012. 2012. doi: 10.1155/2012/946259.

F. Ariffin, S. Heong Chew, K. Bhupinder, A. A. Karim, and N. Huda, “Antioxidant capacity and phenolic composition of fermented Centella asiatica herbal teas,” J Sci Food Agric, vol. 91, no. 15, pp. 2731–2739, Dec. 2011, doi: 10.1002/jsfa.4454.

M. Zia-Ul-Haq, S. Ahmad, S. A. Bukhari, R. Amarowicz, S. Ercisli, and H. Ze Jaafar, “Compositional studies and biological activities of some mash bean (Vigna mungo (L.) Hepper) cultivars commonly consumed in Pakistan,” 2014. [Online]. Available: http://www.biolres.com/content/47/1/23

M. Qayum, S. Ercisli, M. Zia-Ul-Haq, and M. Raza Shah, “Biological screening of selected flora of Pakistan Determination of Enzyme Inhibition Potential and Anticancer Effects of Pistacia khinjuk Stocks Raised in In Vitro and In Vivo Conditions View project New Technologies for Sweet Cherry Cultivation View project Biological screening of selected fl ora of Pakistan”, doi: 10.1590/S0716-97602012000400008.

S. Agrawal and K. Misra, “Pbytocbemical Study of tile Fruit Pulp of Grewia asiatica Linn.”

K. C. Joshi, L. Prakash, and R. Shah, “Notes Chemical Investigation of the Bark and Heartwood of Grewia asiatica Lion.”

P. L. Larsen, “Aging and resistance to oxidative damage in Caenorhabditis elegans,” 1993. [Online]. Available: https://www.pnas.org

B. Halliwell, “HOW TO CHARACTERIZE A BIOLOGICAL ANTIOXIDANT.”

M. Zia-Ul-Haq, P. Landa, Z. Kutil, M. Qayum, and S. Ahmad, “REPORT Evaluation of anti-inflammatory activity of selected legumes from Pakistan: In vitro inhibition of Cyclooxygenase-2,” 2013.

S. L. Helfand and B. Rogina, “Genetics of Aging in the Fruit Fly, Drosophila melanogaster,” Annual Review of Genetics, vol. 37. pp. 329–348, 2003. doi: 10.1146/annurev.genet.37.040103.095211.

T. K. Lim, “Grewia asiatica,” in Edible Medicinal And Non Medicinal Plants, Springer Netherlands, 2012, pp. 184–188. doi: 10.1007/978-94-007-2534-8_24.

R. Govindarajan, M. Vijayakumar, and P. Pushpangadan, “Antioxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda,” Journal of Ethnopharmacology, vol. 99, no. 2. pp. 165–178, Jun. 03, 2005. doi: 10.1016/j.jep.2005.02.035.

“NII-Electronic Library Service.”

R. Srikumar, N. J. Parthasarathy, S. Manikandan, G. S. Narayanan, and R. Sheeladevi, “Effect of Triphala on oxidative stress and on cell-mediated immune response against noise stress in rats,” Mol Cell Biochem, vol. 283, no. 1–2, pp. 67–74, Feb. 2006, doi: 10.1007/s11010-006-2271-0.

“7h”.

E. P. Sabina and M. Rasool, “An in vivo and in vitro potential of Indian ayurvedic herbal formulation Triphala on experimental gouty arthritis in mice,” Vascul Pharmacol, vol. 48, no. 1, pp. 14–20, Jan. 2008, doi: 10.1016/j.vph.2007.11.001.

Published

29-04-2025

How to Cite

1.
Abhishek Srivastava. ANTIAGEING POTENTIALS OF PLANT METABOLITES: A REVIEW. ijp [Internet]. 2025 Apr. 29 [cited 2025 May 6];16(2). Available from: https://www.ijp.arjournals.org/index.php/ijp/article/view/658

Issue

Section

Review Article